6,887 research outputs found

    Wind turbine condition assessment through power curve copula modeling

    Get PDF
    Power curves constructed from wind speed and active power output measurements provide an established method of analyzing wind turbine performance. In this paper it is proposed that operational data from wind turbines are used to estimate bivariate probability distribution functions representing the power curve of existing turbines so that deviations from expected behavior can be detected. Owing to the complex form of dependency between active power and wind speed, which no classical parameterized distribution can approximate, the application of empirical copulas is proposed; the statistical theory of copulas allows the distribution form of marginal distributions of wind speed and power to be expressed separately from information about the dependency between them. Copula analysis is discussed in terms of its likely usefulness in wind turbine condition monitoring, particularly in early recognition of incipient faults such as blade degradation, yaw and pitch errors

    Using dynamic optimal power flow to inform the design and operation of active network management schemes

    Get PDF
    Active Network Management (ANM) schemes are providing the communications and control infrastructure to allow the integration of energy storage and flexible demand in distribution networks. These technologies can be characterised as intertemporal in that their operation at different points in time is linked. This paper provides a discussion of the issues created when optimising an ANM scheme containing intertemporal energy technologies. A technique called Dynamic Optimal Power Flow is discussed and a case study is presented. The requirement to use forecasts of renewable energy resources such as wind power is discussed together with the issues that this creates

    An assessment of principles of access for wind generation curtailment in active network management schemes

    Get PDF
    The growth of wind generation embedded in distribution networks is leading to the development and implementation of Active Network Management (ANM) strategies. These aim to increase the capacity of Distributed Generation (DG) that can connect to a network. One such ANM strategy is generation curtailment where DG is given a non-firm connection under which the network can instruct a generator to reduce its output under specified conditions. Currently in the UK the Orkney distribution network operates a curtailment scheme for wind and other renewable generation [1]and a similar scheme is being developed for the Shetland Islands [2]. The main objective of this paper is to explore the options for Principles of Access (PoA) for curtailment of wind generation on distribution networks which employ ANM. The PoA define the commercial rules by which a DG unit obtains access to the distribution network and under an ANM curtailment scheme the PoA defines the curtailment instructions that would be sent to different DG units when network constraints occur. The scenarios studied in this paper are based on the Orkney distribution network

    Maximising revenue for non-firm distributed wind generation with energy storage in an active management scheme

    Get PDF
    The connection of high penetrations of renewable generation such as wind to distribution networks requires new active management techniques. Curtailing distributed generation during periods of network congestion allows for a higher penetration of distributed wind to connect, however, it reduces the potential revenue from these wind turbines. Energy storage can be used to alleviate this and the store can also be used to carry out other tasks such as trading on an electricity spot market, a mode of operation known as arbitrage. The combination of available revenue streams is crucial in the financial viability of energy storage. This study presents a heuristic algorithm for the optimisation of revenue generated by an energy storage unit working with two revenue streams: generation-curtailment reduction and arbitrage. The algorithm is used to demonstrate the ability of storage to generate revenue and to reduce generation curtailment for two case study networks. Studies carried out include a single wind farm and multiple wind farms connected under a 'last-in-first-out' principle of access. The results clearly show that storage using both operating modes increases revenue over either mode individually. Moreover, energy storage is shown to be effective at reducing curtailment while increasing the utilisation of circuits linking the distribution and transmission networks. Finally, renewable subsidies are considered as a potential third revenue stream. It is interesting to note that under current market agreements such subsidies have the potential to perversely encourage the installation of inefficient storage technologies, because of increased losses facilitating greater "utilisation" of renewable generation

    Maximising the benefit of distributed wind generation through intertemporal Active Network Management

    Get PDF
    The role of distribution networks is changing. There is a significant drive, influenced by climate change and security of supply issues, to move electricity generation towards renewable technologies. This is leading to an increase in demand for renewable generation connections at the distribution network level and putting pressure on distribution network operators to change the 'fit-and-forget' philosophy of network operation to include more active approaches. In the UK this is seen through the development of Active Network Management schemes which manage distributed generation in real-time, applying constraints when required to maintain network limits. In parallel, technologies have been developed that are capable of providing intertemporal flexibility, of which two particular examples are energy storage and flexible demand. The objective of the thesis is to answer the questions: How can energy storage and flexible demand be scheduled in a second-generation Active Network Management scheme? And how should they be operated to gain most benefit from distributed wind generation? To answer these questions, the thesis develops and uses tools to study the optimisation of second-generation Active Network Management schemes including intertemporal technologies. The tools developed include a Dynamic Optimal Power Flow algorithm for management of energy storage and flexible demand. The thesis provides the first fully flexible model of energy storage in this context, the first implementation of principles-of-access in an optimal power flow, and the first detailed study of the role of energy storage and flexible demand in managing thermal limits and reducing curtailment of distributed wind generation. The thesis also develops the theory of Dynamic Locational Marginal Pricing based on the economic information contained in an optimal solution to a Dynamic Optimal Power Flow. The thesis shows this to be a useful way of understanding the economic impact of intertemporal flexibility and monetary flows in markets which contain them. The thesis goes on to provide a detailed report of the application of Dynamic Optimal Power Flow and Dynamic Locational Marginal Pricing to an islanded Active Network Management scheme currently in deployment in the UK. This highlights the ability of the tools developed to contribute to future projects. A conclusions of the thesis is that DOPF provides a useful method of scheduling flexible devices such as energy storage and power systems. It takes full account of network constraints and limitations, and as applied in this thesis, the most complete models of the intertemporal effects of energy storage and flexible demand to date. The studies contained in the thesis show that energy storage and flexible demand can increase the benefit of distributed wind generation in Active Network Management by minimising curtailment and transferring generated electricity to periods during which the energy has greatest value in offsetting expensive, fossil fuel based generation. The thesis notes the importance of a useful definition of the 'benefit' of wind generation in terms of global objectives such as minimising emissions rather than interim objectives such as maximising generation from renewables. The thesis discusses the importance of losses in energy storage, and the relationship of storage and network losses with curtailment of wind and the lost opportunity of generating electricity. In terms of losses, the extension of existing economic analysis methods leads to the result that flexibility will only operate between time-steps where the ratio of prices is greater than the round-trip losses of the store. Within this constraint, effective use of energy storage is shown to result from regular charging and discharging. The comparison between energy storage and flexible demand shows that where there are few losses associated with flexibility in demand it is significantly more successful than energy storage at mitigating the effects of variability in wind. The final study of an islanded distribution network with wind curtailment, concludes that energy storage is less effective that flexible demand at reducing wind curtailment, but can provide benefit through management of peak demand. Flexible demand, in the form of flexible domestic electric heating, is shown to have the ability to provide a significant benefit in terms of reduced wind curtailment. This ability is further enhanced for island situations if demand has a frequency-responsive component.The role of distribution networks is changing. There is a significant drive, influenced by climate change and security of supply issues, to move electricity generation towards renewable technologies. This is leading to an increase in demand for renewable generation connections at the distribution network level and putting pressure on distribution network operators to change the 'fit-and-forget' philosophy of network operation to include more active approaches. In the UK this is seen through the development of Active Network Management schemes which manage distributed generation in real-time, applying constraints when required to maintain network limits. In parallel, technologies have been developed that are capable of providing intertemporal flexibility, of which two particular examples are energy storage and flexible demand. The objective of the thesis is to answer the questions: How can energy storage and flexible demand be scheduled in a second-generation Active Network Management scheme? And how should they be operated to gain most benefit from distributed wind generation? To answer these questions, the thesis develops and uses tools to study the optimisation of second-generation Active Network Management schemes including intertemporal technologies. The tools developed include a Dynamic Optimal Power Flow algorithm for management of energy storage and flexible demand. The thesis provides the first fully flexible model of energy storage in this context, the first implementation of principles-of-access in an optimal power flow, and the first detailed study of the role of energy storage and flexible demand in managing thermal limits and reducing curtailment of distributed wind generation. The thesis also develops the theory of Dynamic Locational Marginal Pricing based on the economic information contained in an optimal solution to a Dynamic Optimal Power Flow. The thesis shows this to be a useful way of understanding the economic impact of intertemporal flexibility and monetary flows in markets which contain them. The thesis goes on to provide a detailed report of the application of Dynamic Optimal Power Flow and Dynamic Locational Marginal Pricing to an islanded Active Network Management scheme currently in deployment in the UK. This highlights the ability of the tools developed to contribute to future projects. A conclusions of the thesis is that DOPF provides a useful method of scheduling flexible devices such as energy storage and power systems. It takes full account of network constraints and limitations, and as applied in this thesis, the most complete models of the intertemporal effects of energy storage and flexible demand to date. The studies contained in the thesis show that energy storage and flexible demand can increase the benefit of distributed wind generation in Active Network Management by minimising curtailment and transferring generated electricity to periods during which the energy has greatest value in offsetting expensive, fossil fuel based generation. The thesis notes the importance of a useful definition of the 'benefit' of wind generation in terms of global objectives such as minimising emissions rather than interim objectives such as maximising generation from renewables. The thesis discusses the importance of losses in energy storage, and the relationship of storage and network losses with curtailment of wind and the lost opportunity of generating electricity. In terms of losses, the extension of existing economic analysis methods leads to the result that flexibility will only operate between time-steps where the ratio of prices is greater than the round-trip losses of the store. Within this constraint, effective use of energy storage is shown to result from regular charging and discharging. The comparison between energy storage and flexible demand shows that where there are few losses associated with flexibility in demand it is significantly more successful than energy storage at mitigating the effects of variability in wind. The final study of an islanded distribution network with wind curtailment, concludes that energy storage is less effective that flexible demand at reducing wind curtailment, but can provide benefit through management of peak demand. Flexible demand, in the form of flexible domestic electric heating, is shown to have the ability to provide a significant benefit in terms of reduced wind curtailment. This ability is further enhanced for island situations if demand has a frequency-responsive component

    Commercial integration of storage and responsive demand to facilitate wind energy on the Shetland Islands

    Get PDF
    The Northern Isles New Energy Solutions (NINES) project seeks to implement Active Network Management (ANM) on the Shetland Islands in a manner which reduces customers’ energy consumption, lowers peak demand and facilitates an increase in the proportion of electricity from wind, in order to take advantage of the unique wind resource of the islands. This presentation focuses on the commercial frameworks and trading arrangements necessary to permit additional wind capacity onto the islanded network through the active use of storage and responsive demand technologies. The network is modelled using a Dynamic Optimal Power Flow (DOPF) framework, which allows the unit scheduling of different combinations of generation, storage and demand to be optimised according to different optimisation goals. This is used as a foundation to explore the value of wind energy and storage in meeting the long-term goals of the network, the forms of trading and markets which may be used to contract services, and the potential for responsive demand to facilitate different forms of connection agreements and curtailment strategies for new wind farms. In modelling the Shetland network using Dynamic Optimal Power Flow (DOPF), the optimum unit commitment schedule is determined across a daily horizon for different network topologies, including variable levels of wind generation, storage and demand-side response - primarily storage heaters and water tanks controllable by the Distribution System Operator via Active Network Management. This informs the level of wind generation which may be accepted onto the network, and allows the creation and testing of commercial agreements both for wind generators keen to utilise the unique resource of the islands, as well as allowing third-party operation of storage, and reducing the peak energy demand of domestic consumers. This allows a greater level of demand to be supplied by non-thermal sources through the time-shifting of demand against the availability of the wind resource. Support of the grid through reserve and response is considered in the context of maintaining system stability, with the aim of procuring services through third-party contractual arrangements. Data collected from the operational history of the islands and technology trials demonstrate the feasibility of these approaches and their potential applicability to other constrained distribution networks with the potential for high levels of wind generation. The data from trials of domestic storage equipment and modelling of wind curtailment demonstrate quantitatively the ways in which commercial integration of modern storage and responsive demand can be used to increase the utilisation of wind energy on islanded networks, which may often have increased renewable resources but limited grid capacity. It is shown that there are a number of trading and connection agreements which can be used to contract for generation and ancillary services to meet these goals

    Assessing the cumulative environmental effects of marine renewable energy developments: establishing common ground

    Get PDF
    Assessing and managing the cumulative impacts of human activities on the environment remains a major challenge to sustainable development. This challenge is highlighted by the worldwide expansion of marine renewable energy developments (MREDs) in areas already subject to multiple activities and climate change. Cumulative effects assessments in theory provide decision makers with adequate information about how the environment will respond to the incremental effects of licensed activities and are a legal requirement in many nations. In practise, however, such assessments are beset by uncertainties resulting in substantial delays during the licensing process that reduce MRED investor confidence and limit progress towards meeting climate change targets. In light of these targets and ambitions to manage the marine environment sustainably, reducing the uncertainty surrounding MRED effects and cumulative effects assessment are timely and vital. This review investigates the origins and evolution of cumulative effects assessment to identify why the multitude of approaches and pertinent research have emerged, and discusses key considerations and challenges relevant to assessing the cumulative effects of MREDs and other activities on ecosystems. The review recommends a shift away from the current reliance on disparate environmental impact assessments and limited strategic environmental assessments, and a move towards establishing a common system of coordinated data and research relative to ecologically meaningful areas, focussed on the needs of decision makers tasked with protecting and conserving marine ecosystems and services

    South West England Network Analysis

    Get PDF
    The report presents initial analysis of the electricity network in SW England including calculation of Locational Marginal Prices (LMPs) and the flow of power under three generation and demand cases and in two years: 2017 and 2020. The 400 kV and 132 kV networks in Cornwall and Devon are modelled along with a 33kV network from the Rame Bulk Supply Point. The report includes case studies of minimum/maximum demand and high/low distributed generation (DG) output representative of 2017 and a potential 2020 scenario. Analysis of constraints, line loading, voltage and LMPs is carried out for each case. Studies are conducted assuming an illustrative GB-wider wholesale price of electricity of ÂŁ50/MWh. Key results show that where network constraints are not binding, LMPs can vary from ÂŁ56.10/MWh in the cases of high import to ÂŁ40.20/MWh in cases of high exports. Where constraints are binding and are caused by large availability of zero marginal cost renewable generation, the LMPs will drop to ÂŁ0/MWh behind those constraints

    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD

    Get PDF

    A model for size‐effects in flat punch nanoindentation

    Get PDF
    The Indentation Size Effect (ISE), that at very small scales materials are harder, has been widely reported and demonstrated through experimentation by numerous authors. One widely accepted model for explaining this effect is the Nix-Gao theory through the use of geometrically necessary dislocations (GNDs). Their model explains that the hardness for a conical indenter increases based on its indentation depth, due to the high GND density when the indentation depth is small. This model was adapted for a spherical indenter by relating the hardness effect to the contact radius of the indenter. Here we have further developed this model to explain the hardness effect for a flat punch indenter, where the GNDs are generated at the edges of the contact area and hardness increases as a function of both indenter depth and contact radius. Our model assumes a rigid flat-punch indenter indenting into a plane strain half space. As the indenter is displaced downwards, material from the half-space is deformed at the corners in the manner described by slip line field theory. GNDs are assumed to be produced vertically below the two edges of the indenter, creating the strain hardening in ISE. The model was tested against simulations performed using the finite element modelling software Comsol over a range of scales to confirm its accuracy
    • …
    corecore